Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Med Chem ; 67(8): 6822-6838, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588468

RESUMO

Weak antigens represented by MUC1 are poorly immunogenic, which greatly constrains the development of relevant vaccines. Herein, we developed a multifunctional lipidated protein as a carrier, in which the TLR1/2 agonist Pam3CSK4 was conjugated to the N-terminus of MUC1-loaded carrier protein BSA through pyridoxal 5'-phosphate-mediated transamination reaction. The resulting Pam3CSK4-BSA-MUC1 conjugate was subsequently incorporated into liposomes, which biomimics the membrane structure of tumor cells. The results indicated that this lipidated protein carrier significantly enhanced antigen uptake by APCs and obviously augmented the retention of the vaccine at the injection site. Compared with the BSA-MUC1 and BSA-MUC1 + Pam3CSK4 groups, Pam3CSK4-BSA-MUC1 evoked 22- and 11-fold increases in MUC1-specific IgG titers. Importantly, Pam3CSK4-BSA-MUC1 elicited robust cellular immunity and significantly inhibited tumor growth. This is the first time that lipidated protein was constructed to enhance antigen immunogenicity, and this universal carrier platform exhibits promise for utilization in various vaccines, holding the potential for further clinical application.


Assuntos
Lipossomos , Mucina-1 , Animais , Mucina-1/imunologia , Mucina-1/química , Camundongos , Humanos , Lipopeptídeos/química , Lipopeptídeos/imunologia , Lipopeptídeos/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Soroalbumina Bovina/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Camundongos Endogâmicos BALB C , Antígenos/imunologia , Linhagem Celular Tumoral
2.
Bioconjug Chem ; 32(8): 1472-1490, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34228433

RESUMO

The development of lipopeptides (lipidated peptides) for vaccines is discussed, including their role as antigens and/or adjuvants. Distinct classes of lipopeptide architectures are covered including simple linear and ligated constructs and lipid core peptides. The design, synthesis, and immunological responses of the important class of glycerol-based Toll-like receptor agonist lipopeptides such as Pam3CSK4, which contains three palmitoyl chains and a CSK4 hexapeptide sequence, and many derivatives of this model immunogenic compound are also reviewed. Self-assembled lipopeptide structures including spherical and worm-like micelles that have been shown to act as vaccine agents are also described. The work discussed includes examples of lipopeptides developed with model antigens, as well as for immunotherapies to treat many infectious diseases including malaria, influenza, hepatitis, COVID-19, and many others, as well as cancer immunotherapies. Some of these have proceeded to clinical development. The research discussed highlights the huge potential of, and diversity of roles for, lipopeptides in contemporary and future vaccine development.


Assuntos
Lipopeptídeos/química , Vacinas/química , Animais , Humanos , Lipopeptídeos/imunologia , Vacinas/imunologia
3.
Theranostics ; 11(15): 7425-7438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158858

RESUMO

The lack of tumor specific antigens (TSA) and the immune tolerance are two major obstacles for the immunotherapy of cancer. Current immune checkpoint inhibitors (ICIs) show clinical responses in only limited subsets of cancer patients, which, to some extent, depends on the mutation load of tumor cells that may generate neoantigens. Here, we aimed to generate a neoantigen MDP to exhibit stronger anti-tumor efficacy. Methods: In this study, we utilized chemically modified sialic acid precursor tetra acetyl-N-azidoacetyl-mannosamine (AC4ManNAZ) to engineer the glycoproteins on the membranes of tumor cells for the covalent ligation of hapten adjuvant Pam3CSK4 in vivo, which eventually generated a neoantigen, i.e., ManNAZ-DBCO-Pam3CSK4 (MDP), on tumor cells. The high labeling efficiency, relatively specific biodistribution in tumor tissues and the anti-tumor efficacy were confirmed in the syngeneic murine models of the breast cancer and the lung cancer. Results: The generation of MDP neoantigen in tumor-bearing mice significantly evoked both the humoral and the T-cell-dependent antitumor immune responses, resulting in a strong inhibition on the growth of the breast cancer and the lung cancer allografts and significantly prolonged survival of tumor-bearing mice. Interestingly, MDP neoantigen was able to dramatically increase the sensitivity of cancer cells to ICIs and greatly enhance the anti-tumor efficacy in the murine models of both breast cancer and the lung cancer, which showed no or low responses to the immunotherapy with anti-PD1 antibody alone. Conclusions: We developed a simple metabolic glycoengineering method to artificially generate neoantigens on tumor cells to enhance tumor cell immunogenicity, which is able to significantly improve the response and the clinical outcome of ICIs.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Glicoproteínas , Lipopeptídeos , Neoplasias Mamárias Experimentais , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/farmacologia , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Feminino , Glicoproteínas/química , Glicoproteínas/imunologia , Glicoproteínas/farmacologia , Lipopeptídeos/química , Lipopeptídeos/imunologia , Lipopeptídeos/farmacologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Camundongos
4.
Sci Rep ; 11(1): 6782, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762618

RESUMO

Following bacterial infection, macrophages produce pro-inflammatory cytokines in response to bacterial cell components, including lipopolysaccharide (LPS) and lipopeptide, and simultaneously phagocytize and digest the invading bacteria. To study the effects of phagocytosis on pro-inflammatory responses, we determined if phagocytosis of polystyrene latex beads with ~ 1 µm diameter increases pro-inflammatory cytokine expression by human macrophage-like U937 and THP-1 cells stimulated with LPS. Treating macrophage-like cells with beads coated with IgG to facilitate Fcγ receptor-mediated phagocytosis increased LPS-induced expression of pro-inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. Treatment with beads coated with poly-L-lysine to facilitate Fcγ receptor-independent phagocytosis also increased LPS-induced cytokine expression. Our results indicate that LPS-induced pro-inflammatory responses are enhanced by bead phagocytosis regardless of the uptake mechanism. Additionally, phagocytosis enhanced LPS-induced NF-κB activation, suggesting that Toll-like receptor (TLR) 4 signaling is enhanced by phagocytosis. Furthermore, bead phagocytosis enhanced pro-inflammatory responses in U937 cells stimulated with lipopeptide, a ligand for the TLR2/TLR6 heterodimeric receptor. In conclusion, microparticle phagocytosis by macrophage-like U937 and THP-1 cells enhances the innate immune response induced by bacterial components.


Assuntos
Antígenos de Bactérias/imunologia , Lipopeptídeos/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose/imunologia , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Receptores de IgG/metabolismo , Células THP-1 , Células U937
5.
Nat Commun ; 12(1): 1836, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758175

RESUMO

To prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear. Here we address this question using single cell and single molecule approaches in mammary epithelial cells and primary organoids. We find that epithelial tissues respond to bacterial microbe associated molecular patterns by activating a subset of cells in an all-or-nothing (i.e. digital) manner. The maximum fraction of responsive cells is regulated by a bimodal epigenetic switch that licenses the TLR2 promoter for transcription across multiple generations. This mechanism confers a flexible memory of inflammatory events as well as unique spatio-temporal control of epithelial tissue-level immune responses. We propose that epigenetic licensing in individual cells allows for long-term, quantitative fine-tuning of population-level responses.


Assuntos
Bactérias/imunologia , Células Epiteliais/imunologia , Imunidade Inata , Lipopeptídeos/imunologia , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Bactérias/metabolismo , Linhagem Celular , Citocinas/metabolismo , Citocinas/farmacologia , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Flagelina/farmacologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Hibridização in Situ Fluorescente , Glândulas Mamárias Animais , Camundongos , Organoides/efeitos dos fármacos , Organoides/imunologia , Organoides/metabolismo , Regiões Promotoras Genéticas , RNA-Seq , Transdução de Sinais/imunologia , Análise de Célula Única , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
6.
Chembiochem ; 22(7): 1215-1222, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33180981

RESUMO

Synthetic vaccines, based on antigenic peptides that comprise MHC-I and MHC-II T-cell epitopes expressed by tumors, show great promise for the immunotherapy of cancer. For optimal immunogenicity, the synthetic peptides (SPs) should be adjuvanted with suitable immunostimulatory additives. Previously, we have shown that improved immunogenicity in vivo is obtained with vaccine modalities in which an SP is covalently connected to an adjuvanting moiety, typically a ligand to Toll-like receptor 2 (TLR2). SPs were covalently attached to UPam, which is a derivative of the classic TLR2 ligand Pam3 CysSK4 . A disadvantage of the triply palmitoylated UPam is its high lipophilicity, which precludes universal adoption of this adjuvant for covalent modification of various antigenic peptides as it renders the synthetic vaccine insoluble in several cases. Here, we report a novel conjugatable TLR2 ligand, mini-UPam, which contains only one palmitoyl chain, rather than three, and therefore has less impact on the solubility and other physicochemical properties of a synthetic peptide. In this study, we used SPs that contain the clinically relevant neoepitopes identified in a melanoma patient who completely recovered after T-cell therapy. Homogeneous mini-UPam-SP conjugates have been prepared in good yields by stepwise solid-phase synthesis that employed a mini-UPam building block pre-prepared in solution and the standard set of Fmoc-amino acids. The immunogenicity of the novel mini-UPam-SP conjugates was demonstrated by using the cancer patient's T-cells.


Assuntos
Antígenos de Neoplasias/química , Vacinas Anticâncer/imunologia , Ligantes , Receptor 2 Toll-Like/química , Vacinas Sintéticas/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/química , Linhagem Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Desenho de Fármacos , Humanos , Interleucina-8/metabolismo , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/imunologia , Lipoilação , Ativação Linfocitária , Receptor 2 Toll-Like/metabolismo , Vacinas Sintéticas/química
7.
Front Immunol ; 11: 588180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281817

RESUMO

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosisin vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted.


Assuntos
Antígenos de Bactérias/imunologia , Vacina BCG/administração & dosagem , Lipopeptídeos/imunologia , Mycobacterium bovis/imunologia , Linfócitos T/imunologia , Vacinas de Subunidades/administração & dosagem , Animais , Anticorpos Antibacterianos/imunologia , Bovinos/imunologia , Citocinas/imunologia , Interações Hidrofóbicas e Hidrofílicas , Imunização , Masculino
8.
Viruses ; 12(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036278

RESUMO

The highly conserved extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is a promising target for the development of broad-spectrum vaccines. However, M2e is a poor immunogen by itself and must be linked to an appropriate carrier to induce an efficient immune response. In this study, we obtained recombinant mosaic proteins containing tandem copies of M2e fused to a lipopeptide from Neisseria meningitidis surface lipoprotein Ag473 and alpha-helical linkers and analyzed their immunogenicity. Six fusion proteins, comprising four or eight tandem copies of M2e flanked by alpha-helical linkers, lipopeptides, or a combination of both of these elements, were produced in Escherichia coli. The proteins, containing both alpha-helical linkers and lipopeptides at each side of M2e repeats, formed nanosized particles, but no particulate structures were observed in the absence of lipopeptides. Animal study results showed that proteins with lipopeptides induced strong M2e-specific antibody responses in the absence of external adjuvants compared to similar proteins without lipopeptides. Thus, the recombinant M2e-based proteins containing alpha-helical linkers and N. meningitidis lipopeptide sequences at the N- and C-termini of four or eight tandem copies of M2e peptide are promising vaccine candidates.


Assuntos
Proteínas de Bactérias/imunologia , Vírus da Influenza A/imunologia , Proteínas de Fusão de Membrana/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Lipopeptídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neisseria meningitidis/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Domínios Proteicos/imunologia
9.
Bioorg Med Chem ; 28(24): 115823, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120079

RESUMO

In order to improve the immunogenicity of peptide-based vaccines against group A Streptococcus (GAS), lipid moieties (C16 lipoamino acid and cholic acid) were conjugated with peptide antigen (P25-J8) and further modified with α-poly(glutamic acid) (α-PGA). Thus, positively charged lipopeptide vaccine candidates LCP-1 (P25-K(J8)-SS-C16-C16) and LCP-2 (P25-K(J8)-SS-K(cholic acid)) were synthesized. Negatively charged LCP-3 (P25-K(PGA-J8)-SS-K(cholic acid)) was also produced by attaching α-PGA to the J8 N-terminus of LCP-2. Polyelectrolyte complex (PEC) nanoparticles were formulated with heparin and/or trimethyl chitosan (TMC) for delivery of the lipopeptide vaccine candidates. The ability of the antigen-loaded nanoparticles to induce humoral immune responses was examined in outbred female Swiss mice following intranasal immunization. The antibodies produced were opsonic against all clinical GAS isolates tested.


Assuntos
Lipopeptídeos/imunologia , Streptococcus pyogenes/imunologia , Vacinas de Subunidades/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Homólogo 5 da Proteína Cromobox , Feminino , Humanos , Imunidade Humoral , Lipopeptídeos/administração & dosagem , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Camundongos , Nanopartículas/química , Polieletrólitos/química , Ácido Poliglutâmico/química , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/química , Vacinas de Subunidades/farmacologia
10.
Int Immunol ; 32(12): 805-810, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32720986

RESUMO

The covalent conjugation of a 14-carbon fatty acid (myristic acid) to the N-terminal Gly residue, termed N-myristoylation, occurs in some viral proteins to dictate their pathological function. This protein lipidation reaction, however, is monitored by host cytotoxic T lymphocytes that are capable of recognizing N-terminal lipopeptide fragments in the context of major histocompatibility complex (MHC) class I molecules. In a rhesus model of human AIDS, for example, the classical MHC class I allomorph, Mamu-B*05104, was shown to bind SIV Nef-derived 4-mer lipopeptides (myristic acid-Gly-Gly-Ala-Ile; C14nef4) and present them to the CD8+ T-cell line, SN45. These lipopeptides accommodated in MHC class I molecules expose much shorter peptide chains than conventional MHC class I-presented 8-10-mer peptides, and the molecular mechanisms by which αß T-cell receptors (TCRs) recognize lipopeptides currently remain unclear. An X-ray crystallographic analysis of the SN45 TCR α and ß heterodimer in a form that was co-crystallized with the C14nef4-bound Mamu-B*05104 complex indicated that the amide group of the N-myristoylated glycine residue offered a primary T-cell epitope by establishing a sole hydrogen bond between its nitrogen atom and the side chain of Glu at position 101 of CDR3ß. Accordingly, the Glu to Ala mutation at this position resulted in the loss of lipopeptide recognition. On the other hand, TCRs were positioned remotely from the peptide portion of C14nef4, and strong interactions were not observed. Thus, these observations provide novel structural insights into lipopeptide recognition by TCRs, which contrast sharply with the general molecular principle of peptide recognition.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Lipopeptídeos/química , Receptores de Antígenos de Linfócitos T/química , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Lipopeptídeos/imunologia , Modelos Moleculares , Conformação Proteica , Receptores de Antígenos de Linfócitos T/imunologia
11.
J Infect Dis ; 221(6): 934-942, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621864

RESUMO

BACKGROUND: The human hookworm, Necator americanus, is a parasite that infects almost half a billion people worldwide. Although treatment is available, vaccination is favorable to combat the spread of this parasite due to its wide distribution and continuous reinfection cycle in endemic communities. METHODS: We have designed a lipopeptide oral delivery system using a B-cell epitope derived from the aspartic protease Na-APR-1 from N americanus, attached to a T-helper epitope. Lipopeptides were self-assembled into nanoparticles or entrapped in liposomes that were electrostatically coated with alginate and trimethyl chitosan polymer shields. The adjuvant-free vaccine candidates were orally administered to mice and generated a humoral immune response against both peptide antigen, and the parent protein in the hookworm gut. RESULTS: The vaccine candidates were evaluated in a rodent hookworm challenge model, resulting in up to 98% and 99% decreases in mean intestinal worm and egg burdens in immunized mice, respectively. CONCLUSIONS: Lipopeptide survived the gastrointestinal conditions, induced humoral immune responses and drived protection against parasite challenge infection.


Assuntos
Infecções por Uncinaria/prevenção & controle , Lipopeptídeos/imunologia , Vacinas/imunologia , Animais , Infecções por Uncinaria/parasitologia , Imunidade Humoral , Lipopeptídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Necator americanus/metabolismo , Vacinação
12.
Vaccine ; 38(3): 597-607, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31740096

RESUMO

To facilitate the preparation of synthetic epitope-based self-adjuvanting vaccines capable of eliciting antibody responses in an out-bred population, we have developed two modular approaches. In the first, the Toll-like receptor 2 agonist Pam2Cys and the target antibody epitope are assembled as a module which is then coupled to a carrier protein as a source of antigens to stimulate T cell help. A vaccine candidate made in this way was shown to induce a specific immune response in four different strains of mice without the need for extraneous adjuvant. In the second approach, three vaccine components in the form of a target antibody epitope, a T helper cell epitope and Pam2Cys, were prepared separately each carrying different chemical functional groups. By using pH-mediated chemo-selective ligations, the vaccine was assembled in a one-pot procedure. Using this approach, a number of vaccine constructs including a lipopeptide-protein conjugate were made and also shown to elicit immune responses in different strains of mice. These two modular approaches thus constitute a powerful platform for the assembly of self-adjuvanting lipopeptide-based vaccines that can potentially be used to induce robust antibody responses in an outbred population. Finally, our study of the impact of chemical linkages on immunogenicity of a lipopeptide vaccine shows that a stable covalent bond between Pam2Cys and a B cell epitope, rather than between Pam2Cys and T helper cell epitope is critical for the induction of antibody responses and biological efficacy, indicating that Pam2Cys functions not only as an adjuvant but also participates in processing and presentation of the immunogen.


Assuntos
Adjuvantes Imunológicos/síntese química , Química Farmacêutica/métodos , Lipopeptídeos/síntese química , Vacinas de Subunidades/síntese química , Vacinas Sintéticas/química , Adjuvantes Imunológicos/administração & dosagem , Sequência de Aminoácidos , Animais , Feminino , Lipopeptídeos/administração & dosagem , Lipopeptídeos/imunologia , Masculino , Camundongos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
13.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462558

RESUMO

Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from Bacillus subtilis reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection in vivo Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection.IMPORTANCE In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.


Assuntos
Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Peptidoglicano/metabolismo , Vírus de RNA/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Flaviviridae/efeitos dos fármacos , Lipopeptídeos/imunologia , Lipopeptídeos/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeos Cíclicos/imunologia , Peptídeos Cíclicos/metabolismo , Peptidoglicano/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/virologia , Células Vero , Viroses/metabolismo
14.
J Med Chem ; 62(17): 8080-8089, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31373811

RESUMO

Tuberculosis (TB) remains a staggering burden on global public health. Novel preventative tools are desperately needed to reach the targets of the WHO post-2015 End-TB Strategy. Peptide or protein-based subunit vaccines offer potential as safe and effective generators of protection, and enhancement of local pulmonary immunity may be achieved by mucosal delivery. We describe the synthesis of a novel subunit vaccine via native chemical ligation. Two immunogenic epitopes, ESAT61-20 and TB10.43-11 from Mycobacterium tuberculosis (Mtb), were covalently conjugated to the TLR2-ligand Pam2Cys to generate a self-adjuvanting lipopeptide vaccine. When administered mucosally to mice, the vaccine enhanced pulmonary immunogenicity, inducing strong Th17 responses in the lungs and multifunctional peripheral T-lymphocytes. Mucosal, but not peripheral vaccination, provided substantial protection against Mtb infection, emphasizing the importance of delivery route for optimal efficacy.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antibacterianos/farmacologia , Lipopeptídeos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Antibacterianos/química , Antibacterianos/imunologia , Relação Dose-Resposta a Droga , Lipopeptídeos/química , Lipopeptídeos/imunologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/imunologia , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Relação Estrutura-Atividade , Vacinação
15.
Front Immunol ; 10: 1372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258538

RESUMO

Over fifty percent of the people around the world is infected with Helicobacter pylori (H. pylori), which is the main cause of gastric diseases such as chronic gastritis and stomach cancer. H. pylori adhesin A (HpaA), which is a surface-located lipoprotein, is essential for bacterial colonization in the gastric mucosa. HpaA had been proposed to be a promising vaccine candidate against H. pylori infection. However, the effect of non-lipidated recombinant HpaA (rHpaA) to stimulate immune response was not very ideal, and the protective effect against H. pylori infection was also limited. Here, we hypothesized that low immunogenicity of rHpaA may attribute to lacking the immunostimulatory properties endowed by the lipid moiety. In this study, two novel lipopeptides, LP1 and LP2, which mimic the terminal structure of the native HpaA (nHpaA), were synthesized and TLR2 activation activity was confirmed in vitro. To investigate whether two novel lipopeptides could improve the protective effect of rHpaA against the infection of H. pylori, groups of mice were immunized either intramuscularly or intranasally with rHpaA together with LP1 or LP2. Compared with rHpaA alone, the bacterial colonization of the mice immunized with rHpaA plus LP2 via intranasal route was significantly decreased and the expression levels of serum IgG2a, IFN-γ, and IL-17 cytokines in spleen lymphocyte culture supernatant increased obviously, indicating that the enhanced protection of LP2 may be associated with elevated specific Th1 and Th17 responses. In conclusion, LP2 has been shown to improve the protective effect of rHpaA against H. pylori infection, which may be closely related to its ability in activating TLR2 by mimicking the terminal structure of nHpaA.


Assuntos
Adesinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/fisiologia , Lipopeptídeos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Células Cultivadas , Feminino , Humanos , Imunidade Inata , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lipopeptídeos/síntese química , Camundongos , Camundongos Endogâmicos BALB C , Mimetismo Molecular , Receptor 2 Toll-Like/imunologia
16.
J Immunol ; 202(12): 3349-3358, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043477

RESUMO

Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.


Assuntos
Autoantígenos/metabolismo , Epitopos de Linfócito T/metabolismo , Produtos do Gene nef/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Lipopeptídeos/metabolismo , Peptídeos/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Autoantígenos/química , Autoantígenos/imunologia , Cristalografia por Raios X , Epitopos de Linfócito T/imunologia , Produtos do Gene nef/química , Produtos do Gene nef/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Lipopeptídeos/química , Lipopeptídeos/imunologia , Ativação Linfocitária , Ácido Mirístico/química , Peptídeos/química , Peptídeos/imunologia , Filogenia , Primatas
17.
Microbes Infect ; 21(7): 328-335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30817996

RESUMO

The use of adjuvants in vaccine formulations is a well-established practice to improve immunogenicity and protective immunity against diseases. Previously, we have demonstrated the feasibility of intranasal vaccination with the antigen of killed Leishmania amazonensis promastigotes (LaAg) against experimental leishmaniasis. In this work, we sought to optimize the immunogenic effect and protective immunity against murine visceral leishmaniasis conferred by intranasal delivery of LaAg in combination with a synthetic TLR1/TLR2 agonist (Pam3CSK4). Intranasal vaccination with LaAg/PAM did not show toxicity or adverse effects, induced the increase of delayed-type hypersensitivity response and the production of inflammatory cytokines after parasite antigen recall. However, mice vaccinated with LaAg/PAM and challenged with Leishmania infantum presented significant reduction of parasite burden in both liver and spleen, similar to those vaccinated with LaAg. Although LaAg/PAM intranasal vaccination had induced higher frequencies of specific CD4+ and CD8+ T cells and increased levels of IgG2a antibody isotype in serum, both LaAg and LaAg/PAM groups presented similar levels of IL-4 and IFN-y and decreased production of IL-10 when compared to controls. Our results provide the first evidence of the feasibility of intranasal immunization with antigens of killed Leishmania in association with a TLR agonist, which may be explored for developing an effective and alternative strategy for vaccination against visceral leishmaniasis.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Lipopeptídeos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/administração & dosagem , Citocinas/sangue , Feminino , Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/prevenção & controle , Lipopeptídeos/administração & dosagem , Fígado/metabolismo , Fígado/parasitologia , Linfócitos/imunologia , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Baço/metabolismo , Baço/parasitologia , Vacinação
18.
Immunobiology ; 224(1): 1-9, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509503

RESUMO

Toll-like receptor 2 (TLR2) is currently investigated as a potential therapeutic target in diseases with underlying inflammation like sepsis and arthritis. We reported the discovery, by virtual screening and biological testing, of eight TLR2 antagonists (AT1-AT8) which showed TLR2-inhibitory activity in human cells (Murgueitio et al., 2014). In this study, we have deepened in the mechanism of action and selectivity (TLR2/1 or TLR2/6) of those compounds in mouse primary cells and in vivo. The antagonists reduced, in a dose-dependent way the TNFα production (e.g. AT5 IC50 7.4 µM) and also reduced the nitric oxide (NO) formation in mouse bone marrow-derived macrophages (BMDM). Treatment of BMDM with the antagonists showed that downstream of TLR2, MAPKs phosphorylation and IkBα degradation was reduced. Notably, in a mouse model of tri-acylated lipopeptide (Pam3CSK4)-induced inflammation, AT5 attenuated the TNFα and IL-6 inflammatory response. Further, the effect of AT5 in the stimulation of BMDM by the endogenous alarmin HMGB1 was investigated. Our results indicate that AT4-AT7 and, particularly AT5 appear as good starting points for the development of inhibitors targeting TLR2 in inflammatory disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Sepse/tratamento farmacológico , Receptor 2 Toll-Like/antagonistas & inibidores , Animais , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Lipopeptídeos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/imunologia
19.
Dev Comp Immunol ; 91: 115-122, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389519

RESUMO

Toll-like receptors (TLRs) are a group of sensory receptors which are capable of recognizing a microbial invasion and activating innate immune system responses, including inflammatory responses, in both immune and non-immune cells. However, TLR functions in chick myoblasts, which are myogenic precursor cells contributing to skeletal muscle development and growth, have not been studied. Here, we report the expression patterns of TLR genes as well as TLR ligand-dependent transcriptions of interleukin (IL) genes in primary-cultured chick myoblasts. Almost TLR genes were expressed both in layer and broiler myoblasts but TLR1A was detected only in embryonic layer chick myoblasts. Chick TLR1/2 ligands, Pam3CSK4 and FSL-1, induced inflammatory ILs in both layer and broiler myoblasts but a TLR4 ligand, lipopolysaccharide, scarcely promoted. This is the first report on TLR ligand-dependent inflammatory responses in chick myoblasts, which may provide useful information to chicken breeding and meat production industries.


Assuntos
Proteínas Aviárias/metabolismo , Doenças das Aves/imunologia , Galinhas/imunologia , Inflamação/imunologia , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Animais , Embrião de Galinha , Diglicerídeos/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Lipopeptídeos/imunologia , Lipopolissacarídeos/imunologia , Oligopeptídeos/imunologia , Receptores Toll-Like/metabolismo , Transcriptoma
20.
Front Immunol ; 9: 2768, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581431

RESUMO

Adequate perception of immunologically important pathogen-associated molecular patterns like lipopolysaccharide and bacterial lipoproteins is essential for efficient innate and adaptive immune responses. In the context of Gram-negative infection, bactericidal/permeability-increasing protein (BPI) neutralizes endotoxic activity of lipopolysaccharides, and thus prohibits hyperactivation. So far, no immunological function of BPI has been described in Gram-positive infections. Here, we show a significant elevation of BPI in Gram-positive meningitis and, surprisingly, a positive correlation between BPI and pro-inflammatory markers like TNFα. To clarify the underlying mechanisms, we identify BPI ligands of Gram-positive origin, specifically bacterial lipopeptides and lipoteichoic acids, and determine essential structural motifs for this interaction. Importantly, the interaction of BPI with these newly defined ligands significantly enhances the immune response in peripheral blood mononuclear cells (PBMCs) mediated by Gram-positive bacteria, and thereby ensures their sensitive perception. In conclusion, we define BPI as an immune enhancing pattern recognition molecule in Gram-positive infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Bactérias/imunologia , Proteínas Sanguíneas/imunologia , Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Lipoproteínas/imunologia , Meningites Bacterianas/imunologia , Infecções por Bactérias Gram-Positivas/patologia , Células HEK293 , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Lipopeptídeos/imunologia , Lipopolissacarídeos/imunologia , Masculino , Meningites Bacterianas/patologia , Ácidos Teicoicos/imunologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...